
Clause Set Cycles and Induction

Stefan Hetzl1,2 and Jannik Vierling1,3

1Vienna University of Technology
Institute of Discrete Mathematics and Geometry

2stefan.hetzl@tuwien.ac.at
3jannik.vierling@tuwien.ac.at

Abstract

In this article we relate a family of methods for automated in-
ductive theorem proving based on cycle detection in saturation-based
provers to well-known theories of induction. To this end we introduce
the notion of clause set cycles—a formalism abstracting a certain type
of cyclic dependency between clause sets. We first show that the for-
malism of clause set cycles is contained in the theory of ∃1 induction.
Secondly, we consider the relation between clause set cycles and the
theory of open induction. By providing a finite axiomatization of a
theory of triangular numbers with open induction we show that the
formalism of clause set cycles is not contained in the theory of open
induction. Furthermore, we conjecture that open induction and clause
set cycles are incomparable. Finally, we transfer these results to a
concrete method of automated inductive theorem proving called the
n-clause calculus.

1 Introduction

The subject of automated inductive theorem proving (AITP) aims at au-
tomating the process of finding proofs by mathematical induction. AITP is
of paramount importance to the formal verification of software and hardware.
Every non-trivial program contains loops or recursion, hence its verification
requires some inductive reasoning. But also the development of proof assis-
tants can benefit from automated inductive theorem proving by providing
hammers that can discharge lemmas automatically.

It is folklore that finding proofs by induction is difficult because of the
necessity of non-analyticity of induction formulas. The non-analyticity of

1

mailto:stefan.hetzl@tuwien.ac.at
mailto:jannik.vierling@tuwien.ac.at

induction formulas can be explained proof-theoretically by the failure of cut-
elimination in LK with an induction rule, see [10] for a precise statement.
A wide variety of approaches have been proposed to address this problem.
Among others there are approaches based on enhancements of saturation-
based provers [6, 8, 11], cyclic proofs [2], rippling [4], theory exploration [5],
etc. Most of these approaches are rather technical in nature and are thus
difficult to analyze formally. Hence, most of the analyses carried out for
methods of automated inductive theorem proving are empirical and little is
known about the theoretical properties of these methods. We believe that
providing formal analyses of these methods will contribute to the theoretical
foundations of the subject and thus help in developing better methods.

The work presented in this article continues the analysis of Kersani and
Peltier’s n-clause calculus started in the second author’s master’s thesis [14].
In [14] refutations of the n-clause calculus are translated into proofs of the
sequent calculus LKID introduced in [3]. This translation makes it possible
to read off the induction formulas used by the n-clause calculus. The analysis
carried out in [14] operates directly on the n-clause calculus as originally de-
fined in [11] without introducing an intermediary abstraction. Therefore, the
results obtained in [14] are complicated by inessential technical details. Fur-
thermore, the technicalities of the n-clause calculus made it difficult to state
conjectures clearly. For instance, the n-clause calculus imposes restrictions
on the types of function symbols. Because of these restrictions it is already
difficult to express simple properties such as for example the associativity of
natural numbers. In this article we extend the previous work by introducing
an abstraction called clause set cycles. This new formalism abstracts the
inessential details of the n-clause calculus, thus, allowing us to carry out a
more systematic analysis and to formulate more general conjectures.

The article is structured as follows. In Section 2 we will define the notion
of clause set cycle and the associated notion of refutability by a clause set
cycle. We will then situate these notions with respect to ∃1 induction, and
hence show that the formalism is inherently weak. This result is a gener-
alization of the main theorem (Theorem 6.27) of [14]. In Section 3 we will
provide a finite axiomatization for a theory of triangular numbers with open
induction. This result will then serve as the main technical result in Section
4, where we will show that the notion of refutability by a clause set cycle is
not weaker than open induction. In Section 5 we will show that the n-clause
calculus is indeed a special case of the system of clause set cycles and transfer
the main results of sections 2 and 4 to the n-clause calculus. We thus answer
positively the conjecture of [14] that there exists a clause set that is refutable
by the n-clause calculus, but that is not refutable with open induction. As

2

a result we situate the power of the n-clause calculus with respect to the
theories of ∃1 induction and open induction.

2 Clause Set Cycles and ∃1 Induction

We work in a many-sorted first-order classical logic. By a many-sorted first-
order classical logic we understand a classical first-order logic with a finite
set of sorts S. The sorts represent universes and are interpreted as pairwise
distinct sets. Each function symbol f has a type of the form s1 × · · · ×
sn → sn+1, where s1, . . . , sn, sn+1 ∈ S are sorts and n ≥ 0. Analogously, a
predicate symbol P has a type of the form s1×· · ·×sn, again with s1, . . . , sn ∈
S and n ≥ 0. Let the sort s ∈ S be interpreted as the set Us, then a function
symbol f with type as above, will be interpreted as a function that maps
elements of Us1 × · · · × Usn to elements of Usn+1 . Analogously, a predicate
symbol P with type as above is interpreted as a subset of Us1 × · · · × Usn .
Each individual variable ranges over a fixed sort. Whenever the sort of a
variable is clear from the context, we will not mention it explicitly. Terms
and formulas are defined as usual, but function symbols and relation symbols
need to be applied to terms that agree with the type of the symbol.

Every language that we consider is supposed to contain at least the sort
nat representing the natural numbers, with its function symbols 0 : nat
representing the number 0 and s : nat → nat representing the successor
function. In case the language contains only one sort, we specify function
symbols by pairs of the form f/n where f is a function symbol and n is
a natural number representing the arity of the symbol f . In the following
we fix one such language and denote it by L. Formulas, structures, models,
truth, validity, |=, `, etc. are defined as usual.

By η we denote a distinguished variable ranging over the sort nat. We will
call this variable η a parameter. The parameter η is mainly used to indicate
positions on which arguments by induction take place, that is, the parameter
usually plays the role of the induction variable. Usually the parameter η
will occur freely, in other words, it will not be bound by quantifiers and
therefore behaves similarly to a constant. In the literature a similar concept
of parameter is used, with the difference that the parameter is usually a
constant (even a Skolem constant). In our case treating the parameter as a
variable seems to be more natural, especially when dealing with the language
of induction formulas.

Let f be a unary function symbol and t a term. In order to save paren-

3

theses we write ft for the term f(t). By fnt we abbreviate the term

f(f(. . . f︸ ︷︷ ︸
n times

(t) . . .)).

Let n ∈ N, then by n we denote the term sn0. Let t, t1, . . . , tn be terms
of sort nat and + be a function symbol of type nat × nat → nat denoting
the addition of natural numbers. For the sake of readability we will use the
symbol + as an infix symbol. The expression t1 + t2 + · · · + tn abbreviates
the term (. . . (t1 + t2) + . . .) + tn and nt denotes the term

t+ t+ · · ·+ t︸ ︷︷ ︸
n times

.

Definition 1 (Literal, Clause, Clause set). An L formula l(~x) is called an L
literal if it is an atom or the negation of an atom. An L formula C(~x) is said
to be an L clause if it of the form ∀~y

∨k
i=1 li where li(~x, ~y) with i ∈ {1, . . . , k}

is a literal. An L formula S(~x) is called an L clause set if it is of the form∧m
i=1Ci where Ci with i ∈ {1, . . . ,m} is an L clause.

When the language L is clear from the context we simply say literal,
clause, and clause set instead of L literal, L clause, and L clause set.

Let ϕ and ψ be formulas, then by ϕ → ψ we abbreviate the formula
¬ϕ ∨ ψ. In order to save some parentheses we use the standard convention
that → associates to the right and has a lower precedence than ¬, ∨, and
∧. For example, the formulas ¬ϕ → ψ, ϕ ∧ θ → ψ, ϕ → θ ∨ ψ are to be
read as (¬ϕ) → ψ, (ϕ ∧ θ) → ψ and ϕ → (θ ∨ ψ), respectively. For the
sake of readability we will often not distinguish between a clause and an
equivalent formula up to negation normal form. For example if a1, . . . , an,
and b1, . . . , bm are atoms, then we also call the formula

(a1 ∧ · · · ∧ an)→ (b1 ∨ · · · ∨ bm)

a clause, because its negation normal form is the clause
∨n
i=1 ¬ai ∨

∨m
i=1 bi.

We usually present a concrete clause set
∧n
i=1Ci as the list of clauses C1,

. . . , Cn. Similarly, we will usually present the axioms of a theory as a list of
formulas. We are now ready to define the notion of clause set cycles and the
related notion of refutability by a clause set cycle.

Definition 2. An L clause set S(η) is called an L clause set cycle if it
satisfies the following conditions

S(sη) |= S(η), (1)
S(0) |= ⊥. (2)

4

Note that clause set cycles do not operate in some background theory.
However, a clause set cycle may contain clauses without free variables and
these clauses act as a background theory. A clause set cycle has a natural
interpretation as an argument by infinite descent, which we will later explain
in terms of induction. Before that, we introduce the notion of refutation by
a clause set cycle. A refutation by a clause set cycle consists of a clause set
cycle and a case distinction.

Definition 3. We say that an L clause set R(η) is refuted by an L clause
set cycle S(η) if there exists a natural number n such that

R(snη) |= S(η), (3)

R(k) |= ⊥, for all k ∈ {0, . . . , n− 1}. (4)

If the language is clear from the context we simply speak of clause set
cycles and of clause sets refuted by a clause set cycle. Let us consider an
example in order to clarify the notions of clause set cycle and refutation by
a clause set cycle.

Example 4. Let P and Q be unary predicate symbols over the sort nat and
let R(η) be the clause set consisting of the clauses

Q(η),

¬Q(0),

∀x (Q(sx)→ P(x)),

¬P(0),

∀x (P(sx)→ P(x)).

Our goal is to refute the clause set R(η) by a clause set cycle.
First we claim that S(η) := P(η)∧¬P(0)∧∀x (P(sx)→ P(x)) is a clause

set cycle. We start by showing that S(0) |= ⊥. Observe that S(0) = P (0) ∧
¬P (0) ∧ ∀x (P(sx) → P(x)). Hence we have S(0) |= ⊥. It remains to show
that S(sη) |= S(η). Since S(sη) = P (sη) ∧ ¬P (0) ∧ ∀x (P(sx) → P(x)), it
suffices to show that S(sη) |= P(η). We have S(sη) |= P (sη) and S(sη) |=
∀x (P(sx) → P(x)), hence S(sη) |= P(sη) → P(η) and by modus ponens we
obtain S(sη) |= P (η). Hence S(η) is a clause set cycle.

Now we claim that R(η) is refuted by the clause set cycle S(η). It suffices
to show the entailments R(0) |= ⊥ and R(sη) |= S(η). By definition of
R(η) we have R(η) |= Q(η) and R(η) |= ¬Q(0), hence R(0) |= Q(0) and
R(0) |= ¬Q(0). Therefore R(0) |= ⊥. For the second entailment we have

5

R(sη) |= Q(sη) and R(sη) |= ∀x (Q(sx) → P(x)), thus R(sη) |= Q(sη) →
P(η). Hence R(sη) |= P(η). We thus have R(sη) |= S(η). Hence R(η) is
refuted by the clause set cycle S(η) as claimed.

The cycles introduced in [11] by Kersani and Peltier are parameterized by
two natural numbers i ≥ 0 and j ≥ 1, that control the argument by infinite
descent. The number i—the offset—is the number at which the argument by
infinite descent stops, and j—the step—is the number by which the descent
proceeds. Our clause set cycles do not have such parameters and therefore
appear somewhat restrictive. Let us now demonstrate how to formulate the
concepts of step and offset for clause set cycles.

Definition 5. Let S(η) be an L clause set and i, j ∈ N with j ≥ 1. We say
that S(η) is an L clause set cycle with offset i and step j if

S(k + i) |= ⊥, for k = 0, . . . , j − 1 and,

S(si+jη) |= S(siη).

An L clause set R(η) is refuted by the clause set cycle S(η) with offset i and
step j if there exists a natural number n such that

R(k) |= ⊥, for k = 0, . . . , n− 1,

R(snη) |= S(siη).

We can now show that clause set cycles simulate clause set cycles with
offset and step.

Proposition 6. Let R(η) be an L clause set. If R(η) is refuted by an L
clause set cycle S(η) with offset i and step j, then R(η) is refuted by an L
clause set cycle.

Proof. It is straightforward to see that the offset i is inessential, by letting
T (η) := S(siη) because the L clause set T (η) clearly is a clause set cycle
with offset 0 and step j and refutes R(η) with offset 0 and step j. In order
to show that an arbitrary step j is inessential as well, we let

U(η) :=

j−1∨
l=0

T (slη).

We will show that U is a clause set cycle. To show that U satisfies (1),
it suffices to observe that by the assumption, we have T (k) |= ⊥ for k =
0, . . . , j − 1. Therefore U(0) |= ⊥. In order to show that U satisfies (2),

6

we need to consider two cases. First let l ∈ {0, . . . , j − 2}, then we have
T (sl+1η) |= T (sl+1η), which implies T (slsη) |= U(η). Now let l = j − 1,
then we have T (sjη) |= T (η) by the assumption and, thus, T (slsη) |= U(η).
Therefore, U is a clause set cycle and R is refuted by U .

Clause set cycles thus abstract parameters such as offset and step width
and therefore simplify a formal analysis.

Let ψ(x, ~z) be a formula where x is a variable of sort nat, then the
structural induction axiom Ixψ is defined by

Ixψ := ∀~z (ψ(0, ~z)→ ∀x (ψ(x, ~z)→ ψ(sx, ~z))→ ∀xψ(x, ~z)).

By an ∃1 formula we understand a formula of the form ∃~xϕ(~x, ~y), where ϕ
is quantifier-free. The notion of ∀1 formulas is defined dually to ∃1 formulas.
We will now introduce the two theories of induction that are of interest for
the study of the formalism of clause set cycles.

Definition 7. The theories I∃1(L) and IOpen(L) are given by

I∃1(L) := {Ixψ | ψ(x, ~z) is an ∃1, L formula with x : nat},
IOpen(L) := {Ixψ | ψ(x, ~z) is a quantifier-free, L formula with x : nat}.

Whenever the language L is clear from the context or irrelevant, we will
write I∃1, IOpen instead of I∃1(L), IOpen(L). Let ϕ(x) be a formula with
x of sort nat, then we say that ϕ is inductive if ` ϕ(0) and ϕ(x) ` ϕ(sx).

Let us now consider how the notions of clause set cycles and refutability
by a clause set cycle relate to provability in theories of induction. Let S(x)
be a clause set cycle, then by (1), (2), and by the completeness of first-order
logic, we obtain ` ¬S(0) and ¬S(x) ` ¬S(sx). In other words, the formula
¬S(x) is inductive. Since S is a clause set, S is logically equivalent to a ∀1
formula, hence ¬S(x) is logically equivalent to an ∃1 formula. Therefore, we
have:

Proposition 8. Let S(x) be a clause set cycle, then we have I∃1 ` ¬S(x).

Intuitively a refutation by a clause set cycle consists of a clause set cy-
cle and a case distinction. The case distinction with n ∈ N cases can be
formalized as follows:

Cn(x) :=

(
n−1∨
i=0

x = i

)
∨ ∃y x = sn(y).

Since Cn is clearly inductive and logically equivalent to an ∃1 formula, the
formula Cn is provable with ∃1 induction. So we have:

7

Lemma 9. Let n ∈ N, then I∃1 ` Cn.

Let now R(x) be a clause set refuted by a clause set cycle S(x). Then
there exists a natural number n ∈ N such that R and S satisfy the conditions
(3) and (4). We thus have

` ¬R(i), i = 0, 1, . . . , n− 1, (5)
¬S(x) ` ¬R(sn(x)). (6)

By the Lemma above we can proceed in I∃1 by case distinction on the
variable x. If x = i, then we obtain ¬R(x) by (5). Otherwise if x = sn(x′)
for some x′, then by Proposition 8 and (6) we have ¬R(sn(x′)), thus ¬R(x).
We therefore obtain:

Theorem 10. If a clause set R(x) is refuted by a clause set cycle, then

I∃1 ` ¬R(x).

Refutability by a clause set cycle is thus contained in the theory of ∃1
induction. Therefore, methods for AITP that are based on clause set cycles
can not prove statements that require induction on formulas with two or more
quantifier alternations. This limitation is due to clause set cycles operating
on clause sets instead of some larger set of formulas. Similar limitations
may apply to other AITP methods that extend saturation-based provers by
induction mechanisms that involve only clauses.

3 Open Induction and Triangular numbers

In this section we will provide a finite, universal axiomatization of a theory
of triangular numbers with open induction. This finite axiomatization of
the theory of triangular numbers will be used in Section 4, to show that
there exists a clause set that is refutable by a clause set cycle but that is
not refutable by open induction. The result presented in this section is a
generalization of the finite axiomatization for multiplication-free arithmetic
with open induction provided by Shoenfield in [13].

Let n ∈ N, then by 4n we denote the n-th triangular number
∑n

i=0 i =
n(n + 1)/2. By L. we denote the one-sorted first-order language consisting
of the function symbols 0/0, s/1, p/1, +/2, and the binary predicate symbol
.. The predicate symbol . will be written in infix notation.

8

Definition 11. By T. we denote the theory axiomatized by

∀x sx 6= 0. (A1)
p0 = 0. (A2)

∀x psx = x. (A3)
∀xx+ 0 = x. (A4)

∀x ∀y x+ sy = s(x+ y). (A5)
0 . 0. (A6)

∀x ∀y (x . y → sx . sx+ y). (A7)
∀x ∀y (sx . sx+ y → x . y). (A8)

∀x ∀y ∀z (x . y ∧ x . z → y = z). (A9)

The standard model for this theory is denoted by N.. The model N.
interprets the symbols 0, s, p,+ in the natural way. The predicate symbol .
is interpreted as the graph of the triangle function i.e. the function associating
with each natural number n the triangular number 4n.

Lemma 12. The theory T. + IOpen(L.) proves the following formulas

∀x (x 6= 0→ x = spx). (B1)
∀xx+ y = y + x. (B2)

∀x ∀y ∀z (x+ y) + z = x+ (y + z). (B3)
∀x ∀y ∀z (x+ y = x+ z → y = z). (B4)

The axiom (A9) is not redundant for the axiomatization of the theory
T. + IOpen(L.). This can be seen by taking the standard interpretation
of the symbols 0, s, p, + and by interpreting . as the set {(n,4n) | n ∈
N} ∪ {(n,4n + 1) | n ∈ N}.

Definition 13. By T I. we denote the theory T. + B1 + B2 + B3 + B4.

Our axiomatization of the theory T I. is not minimal, because (A3) can be
derived from the other axioms. Another simple but important observation
is that for every formula ϕ(y) of the language L. we have

T I. ` ϕ(spx)↔ (x = 0 ∧ ϕ(s0)) ∨ (x 6= 0 ∧ ϕ(x)). (7)

We will now show that every formula in T I. is equivalent to some formula
that is “simple” in the following sense.

9

Definition 14. We call a term or a formula simple if it does not contain
the symbol p.

In the theory T I. simple terms have a convenient equivalent representa-
tion.

Lemma 15. Let t(x1, . . . , xn) be a simple term, then there existm1, . . . ,mn, k ∈
N such that T I. ` t = m1x1 + · · ·+mnxn + k.

Proof. The term t can be rewritten with (A4), (A5), (B2), and (B3) into the
form m1x1 + · · ·+mnxn + k.

Whenever we are working in the context of the theory T I. we will often
and implicitly assume that a simple term is of the formm1x1+· · ·+mnxn+k.

Proposition 16. Let ϕ be a formula, then there exists a simple formula ψ
such that T I. ` ϕ↔ ψ.

Proof. We start with an important observation that we shall repeatedly use
throughout the proof. Let t be a term containing the symbol p. Now we
work in the theory T I. . Then by using (A5), (B3), and (B4), it is possible to
permute the symbol s in the term s(t) inwards until it is directly above an
occurrence of the symbol p.

The proof consists of three main steps. First, we eliminate occurrences of
p in the left-hand arguments of triangle atoms. After that, we eliminate in
the resulting formula all occurrences of p in right-hand arguments of triangle
atoms without introducing p to left-hand arguments of triangle atoms. Fi-
nally, we eliminate the symbol p from equational atoms without introducing
p to the triangle atoms.

Let ψ be a formula. We will now show that there exists a formula ψ′

such that T I. ` ψ ↔ ψ′ and moreover ψ′ does not contain an occurrence
of the symbol p in the left-hand arguments of triangle atoms. We start by
defining a measure on formulas that will make the argument more apparent.
Let us define #n

1 (ψ) to be the number of triangle atoms in ψ having exactly
n occurrences of p in their left-hand argument. We furthermore let

Nψ
1 := max{n ∈ N | #n

1 (ψ) 6= 0}.

Now we can define the measure #1(ψ) := (Nψ
1 ,#

Nψ
1

1 (ψ)). We proceed by
induction on the measure #1(ψ) with respect to the natural order on pairs
of natural numbers. If #1(ψ) = (0,m) for some m ∈ N, then ψ does not
contain the symbol p in the left-hand side argument of its triangle atoms.

10

Therefore ψ is already the desired formula. Otherwise if Nψ
1 6= 0, then

#1(ψ) = (Nψ
1 ,#

Nψ
1

1 (ψ)) with #
Nψ

1
1 (ψ) 6= 0. Hence there exists a triangle

atom ϕ := t1 . t2 of ψ having exactly Nψ
1 occurrences of p in its left-hand

argument. Let ϕ′ := s(t1) . s(t1) + t2, then by (A7) and (A8) we have
T I. ` ϕ↔ ϕ′. Obtain a T I. equivalent atom ϕ′′ from ϕ′ by permuting in the
left-hand argument s(t1) the symbol s inwards, as described above, until it is
directly above an occurrence of p. Now apply (7) to ϕ′′ in order to obtain a T I.
equivalent formula ϕ′′′. Note that ϕ′′′ has four atoms—two equational atoms
and two triangle atoms. The triangle atoms both contain exactly Nψ

1 − 1
occurrences of p in their left-hand arguments. Let ψ′ be obtained from ψ by
replacing ϕ by ϕ′′′. We then have T I. ` ψ′ ↔ ψ. If Nψ′

1 = Nψ
1 , then by the

above we have #
Nψ′

1
1 (ψ′) = #

Nψ
1

1 (ψ′) = #
Nψ

1
1 (ψ)−1. Hence, #1(ψ

′) < #1(ψ).
Otherwise we have Nψ′

1 < Nψ
1 and therefore #1(ψ

′) < #1(ψ). In any case
we have #1(ψ

′) < #1(ψ), thus we obtain the desired formula by applying
the induction hypothesis to ψ′.

By the previous step we can now assume that we work with formulas
that do not contain p in the left-hand arguments of triangle atoms. We will
now eliminate all the occurrences of p in right hand arguments of triangle
atoms. To accomplish this we proceed as in the first step by defining #n

2 (ψ),
Nψ

2 , and #2(ψ) in analogy to #n
1 (ψ), Nψ

1 , and #1(ψ) for a formula ψ.
For a formula ψ without p in the left-hand arguments of triangle atoms we
proceed by induction on #2(ψ) as in the first step. If Nψ

2 = 0, then ψ does
not contain p its triangle atoms. Thus ψ is the desired formula. Otherwise

if Nψ
2 6= 0, then #

Nψ
2

2 (ψ) 6= 0, that is, there exists an atom ϕ := t1 . t2 of ψ
with exactly Nψ

2 occurrences of p in t2. We let ϕ′ := s(t1) . s(t1 + t2). Then
T I. ` ϕ↔ ϕ′. Since t1 is assumed to be free of p, the term s(t1 + t2) contains
Nψ

2 occurrences of p. Now we proceed in analogy to the first step by moving
the outermost s inwards, thus allowing us to eliminate one occurrence of p
by making use of the equivalence (7). We therefore obtain a formula ψ′ with
T I. ` ψ ↔ ψ′ and #2(ψ

′) < #2(ψ).
We can now assume that formulas we work with do not contain p in their

triangle atoms. It remains to show that we can eliminate the occurrences of
p from equational atoms without introducing triangle atoms containing p.
Let ψ be a formula, then we define #n

3 (ψ) to be the number of equational
atoms of ψ containing exactly n occurrences of p. We moreover define Nψ

3

and #3(ψ) in analogy to Nψ
1 and #1(ψ). The induction base is again trivial.

For the induction step, we have Nψ
3 6= 0 and #

Nψ
3

3 (ψ) 6= 0. Therefore there

11

exists an equational atom ϕ := (t1 = t2) in ψ with exactly Nψ
3 occurrences of

p. We proceed similarly to the previous two steps above, by first replacing an
the atom ϕ by the T I. equivalent atom s(t1) = s(t2), then moving s inwards,
and finally applying the equivalence (7). Let ψ′ be the resulting formula.
It is easy to see that this does not introduce triangle atoms containing p
and moreover we have #3(ψ

′) < #3(ψ). We can thus apply the induction
hypothesis in order to obtain the desired formula.

At this point the reader might wonder why the authors chose to include a
function symbol for the predecessor function and go through the technicali-
ties of eliminating the symbol p from formulas instead of providing additional
axioms. The idea is to work with purely universal axiomatizations so that
one can in particular apply Herbrand’s theorem. In order to avoid the sym-
bol p we would have to include an axiom containing an existential quantifier
such as ∀x ∃y ((x = 0 ∧ y = 0) ∨ (x 6= 0 ∧ x = s(y))). As a consequence, we
would later run into similar technicalities when dealing with the this exis-
tential quantifier. In fact, the function symbol p is just a Skolem function
introduced for the axiom given above.

We have now everything at hand to start with the model theoretic con-
siderations of the theory T I. . In the following we fix an arbitrary modelM
of the theory T I. . Our aim is to show thatM is also a model of open induc-
tion over the language L.. By 0, S, P, +, and I we denote the respective
interpretations of the symbols 0, s, p, +, and . in the model M. We start
with a few simple observations about the structure of the modelM.

Definition 17. Let a, b ∈ M, then we define a ≺ b if there exists n ≥ 1
such that Sna = b. Accordingly we define a � b if a ≺ b or a = b. We say
that a and b are comparable (in symbols a ∼ b), if a � b or b � a.

It is not hard to see that the relation � is a partial order and that ∼ is
an equivalence relation. Let a be an element of M, then by [a] we denote
the equivalence class of a under ∼. It is easy to see that � is total on [a].
Hence classes of comparable elements together with � form chains. Let us
now look a bit more closely at these chains. As a simple consequence of
(B4) we have ∀xx+ k 6= x for all k ≥ 1. Therefore the chains of comparable
elements are infinite. Consider now the class of elements comparable with 0
and let a be an element comparable with 0. Then by (A1) we have a = Sm0
for some natural number m, that is, 0 is the least element of this chain. The
chain of elements comparable with 0 thus looks as follows:

0 ≺ S10 ≺ S20 ≺ S30 ≺

12

This chain is isomorphic to the chain of natural numbers with ≤ and the
addition. This is why we will call the elements comparable with 0, the
standard elements (of M). Elements that do not belong to this chain are
called non-standard elements (ofM).

Before we have a look at the structure of a chains of non-standard ele-
ments let us summarize some basic properties ofM.

Lemma 18. Let a, b be elements ofM

1. If a is a non-standard element, then Pa is a non-standard element.

2. If a is a non-standard element and m ∈ N, then a = SmPma.

3. The element a + b is a standard element if and only if a and b are
standard elements.

Proof. For (1.) let a be a non-standard element ofM, then a 6= 0. Thus by
(B1) the element Pa is also a non-standard element.

For (2.) if a is non-standard, then a 6= 0 and by (B1) we have a = SPa.
By the (1.) the element Pa is non-standard, so we have P = SP(Pa) thus
a = S2P2a and so on.

For (3.) consider now an element of the form a + b. If a and b are
both standard elements, then it is clear that a + b is a standard element.
Now suppose that a + b is a standard element and suppose without loss
of generality that a is not a standard element. Then there exists m ∈ N
such that Sm0 = a + b = b + a = b + Sm+1Pm+1a. By (A3) we obtain
0 = SPm+1a which contradicts (A1). Hence a must also be a standard
element.

Let us now consider the chain of elements comparable with a non-standard
element a ofM. Let n,m be natural numbers with n < k, then by Lemma
18 we have SnPka = Pk−na. Hence we have Pka ≺ Pk−na. Let b be com-
parable with a, then either a = Smb or b = Sma i.e. b = Pma or b = Sma
for some natural number m. The chain thus has the following structure:

· · · ≺ P3a ≺ P2a ≺ P1a ≺ a ≺ S1a ≺ S2a ≺ S3a ≺

The chain of elements comparable with a is isomorphic to the integers with
the order <.

We define the language L.(M) to be the extension of the language L.
by a constant symbol a for every element a ofM. We let the L. structure
M interpret L.(M) formulas by interpreting for every element a ofM the

13

constant a as itself. The language L.(M) will be especially convenient when
we need to insert elements ofM into L. terms and L. formulas. Let ϕ(x) be
an L.(M) formula. We call an element a ofM a solution of ϕ if ϕ(a) is true
in M. Similarly we call ϕ valid in M if ϕ(a) is true in M for all elements
a of M. In the following we will show the crucial observation that simple
atomic formulas are either valid in M or have only finitely many pairwise
comparable solutions.

Proposition 19. Let ϕ(x, ~y) be a simple atomic formula, ~b a vector of el-
ements of M, then either ϕ(x,~b) is valid in M or ϕ(x,~b) has only finitely
many pairwise comparable solutions.

Proof. Depending on the form of ϕ we need to distinguish between two
cases. If ϕ is of the form s = t, then clearly ϕ(x,~b) is equivalent in M to
mx + c = nx + d for some c, d ∈ M. The claim then follows from Lemma
1 in [13]. If ϕ is of the form s . t, then ϕ(x,~b) is equivalent in M to
mx+ c I nx+ d for some n,m ∈ N and c, d ∈ M. We need to consider
two cases:

• For m = 0, we assume that there are at least two comparable solutions
e and Spe of ϕ(x,~b) with p > 0. We have c I ne+ d and c I nSpe+ d.
Therefore by (A9) we have ne + d = nSpe + d. By (B2) and (A5) we
obtain ne+d = Snp0+ne+d. By (B4) we then have 0 = Snp0. Hence
we clearly have n = 0. Thus ne + d = d, and therefore c I d is true
inM. Because of that c I nx+ d is valid inM.

• For m > 0, we will show that there are at most two comparable solu-
tions of ϕ(x,~b). We proceed indirectly and assume that there are at
least three pairwise comparable solutions e, Sp1e, and Sp2e of ϕ(x,~b)
with 0 < p1 < p2. Since e is a solution we have me+ c I ne+ d. Let
i ∈ {1, 2}, then iterating (A7) and straightforward rewriting we have

Spim(me+ c) I S4pim0 + pim(me+ c) + ne+ d.

Since Spie is a solution of ϕ(x,~b) we have m(Spie) + c I n(Spie) + d.
Therefore by (A5), (A9), (B2) and (B4) we obtain

S4pim0 + pim(me+ c) = Snpi0.

Thus the element me+ c is a standard element ofM. Therefore there
exists k ∈ N such thatme+c = Sk0. We thus have S4pim0+pimSk0 =
Snpi0. Hence by (A1) and because S is injective we obtain

4pim + pimk = npi.

14

Hence m2p1 + m + 2mk = 2n = m2p2 + m + 2mk. But since m 6= 0,
this contradicts the assumption that p1 < p2.

We are now ready to show thatM is a model of open induction over the
language L.. The proof is analogous to the proof given in [13]. For the sake
of completeness we outline the main steps of the proof.

Theorem 20. LetM be a model of T I. , thenM is a model of IOpen(L.).

Proof. Let θ(x, ~z) be a quantifier-free L. formula. We have to show that
M |= Ixθ(x, ~z). By Proposition 16 we can assume without loss of generality
that θ is a simple formula. Let ~b be a vector of elements of M and let
θ′(x) := θ(x,~b). Assume that θ′(0) is true in M and θ′(x) → θ′(S(x)) is
valid inM. Let a be an arbitrary element ofM. If a is a standard element,
then a = Sm0 for some natural number m. So by applying the induction
step repeatedly, starting with θ′(0), we obtain θ′(a).

Now let us consider the case when a is non-standard. Consider the atoms
from which θ′(x) is built. By Proposition 19 there are two types of atoms:
those that are valid inM, and those that have at most finitely many (two)
pairwise comparable solutions. Valid atoms are true inM regardless of the
choice of x, so we need to consider only the remaining atoms. By successively
letting x be a, P1a, P2a, and so on, we will eventually exhaust all the
solutions (� a) of any invalid atom of θ′(x). In other words, by choosing
n ∈ N large enough, the element Pna falsifies all the invalid atoms. The
same technique works for standard elements, starting at 0 and successively
considering S10, S20, and so forth. Now by taking m ∈ N large enough
so that both Pma and Sm0 falsify all the invalid atoms, we observe that
θ′(Sm0) and θ′(Pma) have the same truth value in M. Therefore, since
θ′(Sm0) is true in M, also θ′(Pma) is true. Since SmPma = a, we can
simply apply the induction step m times to find that θ′(a) is true inM.

The finite, universal axiomatizability of T. + IOpen(L.) now follows
immediately from Theorem 20, completeness of first-order logic, and from
Lemma 12.

Theorem 21. Let ϕ be a formula, then T. + IOpen(L.) ` ϕ if and only if
T I. ` ϕ.

4 Clause Set Cycles and Open Induction

In Section 2 we have shown that refutability by a clause set cycle is contained
in the theory of ∃1 induction. The next obvious question to ask is whether

15

refutability by a clause set cycle is also contained in the theory of open in-
duction. In this section we will provide a negative answer to that question by
making use of the finite axiomatizability of the theory of triangular numbers
with open induction shown in Section 3. In order to provide such a negative
answer it suffices to provide a clause set which is refutable by a clause set
cycle, but that is not refutable by open induction. A candidate clause set is
readily found.

Definition 22. We denote by S.(η) the clause set consisting of the clauses
(A4) – (A7) and the clause ∀y ¬η . y.

Let us denote by L′. the language of the clause set S.. The clause set S.
expresses that the triangle function is not total.

Lemma 23. The clause set S.(η) is refutable by a clause set cycle.

Proof. By the soundness of first-order logic it suffices to show that

S.(0) ` ⊥, (8)

and

S.(s(η)) ` S.(η). (9)

For (8) we have S.(0) ` 0 . 0 and S.(0) ` ∀y ¬0 . y. Hence S.(0) ` ⊥. For
(9) we assume S.(s(η)). The clauses of S. not having free variables occur in
S.(s(η)), hence we only need to show that S.(s(η)) ` ∀y ¬η . y. Let y be
arbitrary, then obtain S.(s(η)) ` ¬s(η) . s(η) + y. By the contrapositive of
(A7) we have ¬η . y. Therefore the clause set S. is a clause set cycle. Since
a clause set cycle is trivially refuted by itself, we are done.

It now remains to show that S. cannot be refuted by open induction. In
order to be able to make use of Theorem 21, we will now reformulate the
clause set S. in terms of a theory of triangular numbers. In the following we
denote by T ′. the theory axiomatized by the formulas (A4) – (A7).

Lemma 24. IOpen(L′.) ` ¬S.(η) if and only if T ′.+IOpen(L′.) ` ∀x ∃y x .
y.

Proof. We have the following chain of equivalences.

IOpen(L′.) ` ¬S.(η)

⇔ IOpen(L′.) ` ¬((A4) ∧ · · · ∧ (A7) ∧ ∀y ¬η . y)

⇔ IOpen(L′.) ` ¬((A4) ∧ · · · ∧ (A7) ∧ ¬∃y η . y)

⇔ IOpen(L′.) ` (A4) ∧ · · · ∧ (A7)→ ∃y η . y
⇔ IOpen(L′.) ` (A4) ∧ · · · ∧ (A7)→ ∀x ∃y x . y

16

By the deduction theorem we thus have IOpen(L′.) ` ¬S.(η) if and only if
T ′. + IOpen(L′.) ` ∀x ∃y x . y.

In order to complete the negative answer it clearly suffices to show that
T. + IOpen(L.) 6` ∀x ∃y x . y.

Proposition 25. T. + IOpen(L.) 6` ∀x ∃y x . y.

Proof. We proceed indirectly and assume that T.+IOpen(L.) ` ∀x ∃y x . y.
By Theorem 21 we then also have T I. ` ∀x ∃y x . y. Since T I. is a universal
theory we can apply Herbrand’s theorem to obtain terms t1(x), . . . , tk(x)
such that

T I. `
k∨
i=1

x . ti(x).

Clearly N. is a model of T I. and the triangle function .N. is quadratic. Since
the terms ti(x), with i = 1, . . . , k describe linear functions in N., there exists
m ∈ N such that

N. 6|=
k∨
i=1

m . ti(m).

Contradiction!

We would like to point out that it seems possible to obtain the result of
Proposition 25 by an alternative argument that relies on an interpretation
of the theory T. + IOpen(L.) in the subtheory I∆0 of Peano arithmetic.
The idea is to interpret individuals of T. + IOpen(L.) as “unary” numbers,
that is, finite sequences of “1”s. In particular 0 would be interpreted as the
empty sequence, s as the function that appends a “1” to a finite sequence,
+ as the function that concatenates two finite sequences, and . as a ∆0

formula that defines the graph of the “unary” triangle function. Since I∆0

codes finite sequences the translation outlined above is indeed an interpre-
tation. By Parikh’s theorem the provably total functions of I∆0 on “unary”
elements have a linear growth rate, whereas the “unary” triangle function
has a quadratic growth rate. Hence, the translation of ∀x ∃y x . y is not
provable in I∆0 and therefore the formula ∀x ∃y x . y is not provable in
T.+IOpen(L.). All the notions necessary to develop the argument outlined
above can be found in standard textbooks on first-order arithmetic such as
[9].

Corollary 26. The clause set S.(η) is refutable by a clause set cycle and
IOpen(L′.) 6` ¬S.(η).

17

To summarize we thus have shown the following theorem.

Theorem 27. There exists a language L, and an L clause set S(x) refutable
by clause set cycles such that IOpen(L) 6` ¬S(x).

Since refutability by a clause set cycle is not contained in open induction,
the next obvious question to ask is whether every clause set that is refutable
with open induction is also refutable by a clause set cycle. We believe that
this is not the case. Intuitively, this can be explained by the following two
points: first clause set cycles do not allow for any free variables and secondly
clause set cycles only allow for existential quantification. These two short-
comings of clause set cycles can be demonstrated by the following example.
We assume the usual right recursive definition of the addition from which
we want to prove the sentence ϕ ≡ ∀xx+ (x+ x) = (x+ x) + x. To prove ϕ
with open induction, we first prove by open induction on the variable y the
inductive formula ψ(x) ≡ ∀y x+ (x+ y) = (x+ x) + y. The “lemma” ψ can
now be used to prove ϕ by instantiating the universally quantified variable
y by x. In this example both ideas mentioned above came into play, that is,
the “lemma” ψ contains a free variable and it contains a universal quantifier
that is actually used to prove ϕ.

Conjecture 28. There exists a language L, and an L clause set S(x) such
that IOpen(L) ` ¬S(x) but S(x) is not refutable by a clause set cycle.

5 The n-Clause Calculus: A Case Study

In this section we will use the notion of clause set cycle in order to derive
results about a concrete approach for AITP—the n-clause calculus. The n-
clause calculus is a formalism for AITP that was introduced by Kersani and
Peltier in [11]. This calculus enhances the superposition calculus [1], [12]—a
refinement of resolution-paramodulation calculi—by a cycle detection mecha-
nism. This mechanism detects a certain type of cyclic dependencies between
the clauses that are derived during the saturation process. Such a cyclic
dependency represents an argument by infinite descent and, therefore, rep-
resents an unsatisfiable subset of the derived clauses. Once such a cycle is
detected the refutation is terminated. The n-clause calculus operates on a
syntactically restricted fragment of the logical formalism presented in Section
2. The languages in this section are assumed to contain at least one other
sort, say ι, besides the sort nat of natural numbers. Furthermore, the lan-
guages should not contain any other function symbols of range nat besides 0
and s. By an n-clause we understand a clause of the form ∀~x (N(η, ~x)∨C(~x)),

18

where N(η, ~x) is a disjunction of literals of the form η 6= t(~x) and C is a
disjunction of literals of the form t ./ s where ./ ∈ {=, 6=}, and t, s are
terms of sort other than nat. The formula N is called the constraint part
of the n-clause. An n-clause set is a conjunction of n-clauses. For the sake
of readability we will sometimes identify an n-clause set with the set of its
conjuncts. The notion of “cycles” of the n-clause calculus is based on the
descent operator ↓j with j ∈ N.

Definition 29. Let i ∈ N, and C = ∀~x (N(η, ~x) ∨ C(~x)) an n-clause with
N =

∨k
j=1 η 6= tj. Then we define C↓i := ∀~x (N(η, ~x)↓i∨C(~x)) where N↓i :=∨k

j=1 η 6= si(tj). For an n-clause set S =
∧m
j=1 Cj we define S↓i :=

∧m
j=1 Cj↓i.

Intuitively, the ↓j operation allows us to express that η is replaced by its
j-th predecessor. The following lemma states a crucial property of the ↓j
operator.

Lemma 30. Let S(η) be clause set and j ≥ 0, then we have S↓j(sjη) ` S(η).

The converse of the above entailment does not hold. However it holds in
a theory that provides at least the injectivity of the successor function.

Lemma 31. Let S(η) be a clause set and j ≥ 0, then

∀x ∀y (sx = sy → x = y), S(η) ` S↓j(sjη).

We can now introduce the notions of cycle and of refutability by a cycle.
For the sake of brevity we consider a simplified variant of the n-clause calculus
defined in [11]. Only one of the simplifications imposed by us restricts the
power of the formalism. The cycles presented in [11] rely on a decidable
entailment relation w between clauses such that C w D implies C |=KP D,
where |=KP is the entailment for the “Kersani-Peltier” standard semantics
as presented in [11]. Whenever the original formalism requires C w D, we
require that C |= D. On the one hand the relation |= is not decidable, but
on the other hand the relation |= allows us to use the completeness of first-
order logic. The latter would not be possible with w because this relation
relies on standard semantics for which the completeness theorem does not
hold. According to [11] the relation w is intended to abstract decidable
relations such as syntactic equality or subsumption that also satisfy our
stronger requirement. Hence our restriction does not rule out any practically
relevant instance of the n-clause calculus. Finally, our restriction does not
limit the generality of Corollary 36 below, since a similar argument could be
used, assuming a suitable choice of w.

19

Definition 32. Let R(η) be an n-clause set. A triple (i, j, S(η)) with i, j ∈ N,
j > 0 and S ⊆ R is a cycle for R if S ` η 6= k for k = i, . . . , i + j − 1 and
S ` S↓j. We say that R is refuted by a cycle if there exists a cycle (i, j, S)
for R and R ` η 6= k, for k = 0, . . . , i− 1.

A cycle (i, j, S(η)) for a clause set R(η) is similar to an argument by
induction with an offset i and a step with j. Accordingly, the conditions
S ` n 6= k for k = i, . . . , i + j − 1 correspond to the j base cases, whereas
the condition S ` S↓j corresponds to the step case.

Cycles of the n-clause calculus are thus structurally similar to clause set
cycles. As announced in Section 1 we will show that clause set cycles are
an abstraction of the cycles of the n-clause calculus. In order to show that
every n-clause set refutable by a cycle is also refuted by a clause set cycle
it essentially remains to show that the argument by induction with offset i
and step j can be turned into an argument by structural induction.

Proposition 33. Let R be an n-clause set refuted by a cycle, then R is
refuted by a clause set cycle.

Proof. Let (i, j, S(η)) be a cycle refuting R. Consider the formula

T (η) :=

j−1∨
k=0

S(sk+iη).

It is not difficult to see that T (η) is logically equivalent to a clause. Since
S is a cycle, we have S(η) ` η 6= i+ k for k = 0, . . . , j − 1. Therefore by
instantiating η by i+ k we obtain S(i+ k) ` ⊥ for k = 0, . . . , j − 1. Hence
we have T (0) ` ⊥.

Let k ∈ {0, . . . , j − 2}, then we clearly have S(sk+i+1η) ` T (η). Now let
k = j − 1. Since S is a cycle, we have S ` S↓j . Thus by Lemma 30 we
obtain S(si+jη) ` S(siη). Therefore T (sη) ` T (η). Thus, by the soundness
of first-order logic T (η) is a clause set cycle. Since S ⊆ R we have R ` S and
therefore R(siη) ` T (η). Now let k = 0, . . . , i − 1, then since R ` n 6= k we
have R(k) ` ⊥. Therefore, by the soundness of first-order logic R is refuted
by the clause set cycle T .

By the above proposition the notion of refutation of an n-clause set by
a cycle is also not stronger than ∃1 induction. In the following we will show
that an analogue of Theorem 27 also holds for the n-clause calculus. Let
L be the language consisting of the two sorts nat, ι, the function symbols
0 : nat, s : nat → nat, + : nat × ι → ι, c : ι, and the predicate symbol

20

. : nat× ι. We will again use the predicate symbol . as an infix symbol. Let
S(η) be the L n-clause set consisting of the following n-clauses.

0 . c, (C1)
∀x ∀y (x . y → s(x) . s(x) + y), (C2)
∀x ∀y (η = x→ ¬x . y). (C3)

Lemma 34. The n-clause set S(η) is refuted by a cycle.

Proof. By resolving the clauses (C1) and (C3), we obtain S ` η 6= 0. Re-
solving the clauses (C2) and (C3) yields η = s(x)→ ¬x . y. Hence we have
S ` S↓1. Thus the triple (0, 1, S(η)) is a cycle for S(η). Therefore S(η) is
refuted by a cycle.

Let us now investigate whether S(η) can be refuted by open induction.

Proposition 35. IOpen(L) 6` ¬S(η).

Proof. Assume that IOpen(L) ` ¬S(η). Let L′ be the one-sorted language
obtained from L by replacing the sort ι by the sort nat. We then have
IOpen(L′) ` ¬S(η). By replacing the constant c by 0, we obtain

IOpen(L′.) ` ¬S[c/0](η).

This implies IOpen(L′.) ` ¬S.(η), thus, contradicting Corollary 26.

By Lemma 34 and Proposition 35 we thus have:

Corollary 36. There exists a language L and an L n-clause set S(η) refuted
by a cycle such that IOpen 6` ¬S(η).

6 Conclusion

We have introduced the concept of clause set cycles and the notion of refutabil-
ity by a clause set cycle. Clause set cycles abstract the analogous concepts of
cycle and refutability by a cycle of the n-clause calculus. The main advantage
of clause set cycles is their semantic nature, which makes them independent
of any inference system. This independence of an inference system allows for
a more general analysis of the properties of this type of cycle.

We have explained clause set cycles in terms of theories of induction. We
first have shown that refutability by a clause set cycle is contained in the
theory of ∃1 induction. On the other hand refutation by a clause set cycle is

21

not contained in the theory of open induction and we even conjecture that
open induction is incomparable with the refutability by a clause set cycle.
Finally, we have transferred these results to the n-clause calculus. The results
allow us to formally situate the strength of a variant of the n-clause calculus
with respect to induction, where we formerly only had empirical evidence.
The formal results described in this article improve our understanding of the
strength of the approaches for AITP based on clause set cycles and help to
direct further research.

As mentioned in the introduction, the analysis of clause set cycles is
part of a research program which aims at studying methods for automated
inductive theorem proving in order to improve the theoretical foundations of
this subject. One of the next questions to consider is how clause set cycles
can be extended to handle multiple parameters, how this extension would
impact the power of the formalism, and how the addition of parameters
can be explained from the perspective of induction. Another question to
consider is how the enhancement of superposition by structural induction
presented by Cruanes in [6] is related to clause set cycles. A further topic
of interest are approaches to AITP based on cyclic sequent calculi such as
the calculus introduced by Brotherston and Simpson in [3]. For instance the
inductive theorem prover “Cyclist” [2] is based on the cut-free fragment of this
cyclic calculus. Recently Das [7] has shown that in the context of arithmetic
the logical consequences of cyclic proofs containing only Σn formulas are
contained in the theory IΣn+1. In the setting of arithmetic this result already
gives us an upper bound for provers such as “Cyclist”, however this bound
may be improved by taking into account the cut-freeness of the proofs output
by “Cyclist”.

Acknowledgments

The authors would like to thank the anonymous reviewers whose insightful
feedback has helped to improve this paper.

References

[1] Leo Bachmair and Harald Ganzinger. Rewrite-based Equational The-
orem Proving with Selection and Simplification. Journal of Logic and
Computation, 4(3):217–247, 06 1994.

22

[2] James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A
generic cyclic theorem prover. In Ranjit Jhala and Atsushi Igarashi,
editors, Programming Languages and Systems, volume 7705 of Lecture
Notes in Computer Science, pages 350–367. Springer Berlin Heidelberg,
2012.

[3] James Brotherston and Alex Simpson. Sequent calculi for induction and
infinite descent. Journal of Logic and Computation, 21(6):1177–1216,
10 2010.

[4] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland,
and Alan Smaill. Rippling: A heuristic for guiding inductive proofs.
Artificial Intelligence, 62(2):185 – 253, 1993.

[5] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone.
Automating inductive proofs using theory exploration. In Maria Paola
Bonacina, editor, Automated Deduction – CADE-24, volume 7898 of
Lecture Notes in Computer Science, pages 392–406. Springer Berlin Hei-
delberg, 2013.

[6] Simon Cruanes. Superposition with structural induction. In Clare Dixon
and Marcelo Finger, editors, Frontiers of Combining Systems, volume
10483 of Lecture Notes in Computer Science, pages 172–188. Springer
International Publishing, 2017.

[7] Anupam Das. On the logical complexity of cyclic arithmetic. Logical
Methods in Computer Science, Volume 16, Issue 1, January 2020.

[8] M. Echenim and N. Peltier. Combining induction and saturation-based
theorem proving. Journal of Automated Reasoning, pages 1–42, Mar
2019.

[9] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arith-
metic, volume 3. Cambridge University Press, 2017.

[10] Stefan Hetzl and Tin Lok Wong. Some observations on the logical
foundations of inductive theorem proving. Logical Methods in Computer
Science, Volume 13, Issue 4, April 2018.

[11] Abdelkader Kersani and Nicolas Peltier. Combining superposition and
induction: A practical realization. In Pascal Fontaine, Christophe
Ringeissen, and Renate A. Schmidt, editors, Frontiers of Combining
Systems, volume 8152 of Lecture Notes in Computer Science, pages 7–
22. Springer Berlin Heidelberg, 2013.

23

[12] Robert Nieuwenhuis and Albert Rubio. Chapter 7 - paramodulation-
based theorem proving. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, Handbook of Automated Reasoning,
pages 371 – 443. North-Holland, Amsterdam, 2001.

[13] J. R. Shoenfield. Open sentences and the induction axiom. Journal of
Symbolic Logic, 23(1):7–12, 1958.

[14] Jannik Vierling. Cyclic superposition and induction. Master’s thesis,
Technische Universität Wien, Austria, 2018.

24

	Introduction
	Clause Set Cycles and 1 Induction
	Open Induction and Triangular numbers
	Clause Set Cycles and Open Induction
	The n-Clause Calculus: A Case Study
	Conclusion

